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ABSTRACT

\IAn investigation of the interaction of nitrogen with a

hot tungsten filament has shown that a chemical pumping

effect occurs. The magnitude of this effect and its

variation with temperature is discussed.

Preliminary results on the study of the effect of adsorbed

oxygen on the work function of molybdenum at room tem-

perature have indicated that there are three stages

in the adsorption process: during the first two stages,

I there is a rapid increase in the work function, whereas

in the last stage there is a small increase and very slow

rate of rise in work function.

I

I



1. THE INTERACTION OF NITROGEN

WITH A TUNGSTEN FILAMENT

I. I INTRODUCTION

i
To check the operation of the high-vacuum system, a study was

initiated of the interaction of nitrogen with a tungsten filament. Similar

studies have been made by many other investigators. In this investigation

a constant pressure of nitrogen was maintained in an experimental high-

vacuum chamber by a flow method. The partial pressure of nitrogen was

monitored by an omegatron mass spectrometer. The variation of partial

pressure as a function of time and filament temperature is a measure of

the interaction rates involved.

In preliminary experiments an anomalous behavior was en-

countered in that after allowing the filament to return to room temperature,

the new equilibrium partial pressure of nitrogen was greater than the

original equilibrium pressure established. This effect, which occurred

only at initial filament temperatures greater than about 1800 0 K, is

attributed to chemical pumping of nitrogen at the tungsten filament.

The experimental environment, measurements and results of

this investigation are discussed below.

1. 2 EXPERIMENTAL RESULTS

j The ultra-high vacuum system used provides for differential

pumping of separate chambers isolated by bakable valves. Three pumps

j are used; two ion pumps and one three-stage oil diffusion pump, preceded

by two bakable molecular sieve adsorption traps. A block diagram of the

f system is shown in Fig. 1. Bayard-Alpert inverted ionization gauges are

1. Scientific Report Nos. I and 2 on Contract No. AF19(628)-331.
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-3-

used to monitor total pressures in each chamber, and an omegatron mass

spectrometer is connected to the experimental chamber to measure the

partial pressures of the ambient gases. All portions of the system above

the diffusion pump can be baked to at least 400°C, and all active components

can be outgassed by joule heating, electron bombardment or induction

heating.

After initial processing of the system the partial pressures of

the residual gases were below the present limit of detection, approximately
-12

10 Torr. (All pressures reported are based on an assumed gauge con-

stant of 10 Torr.

A tungsten filament of the ionization gauge was selected for

initial study of adsorption phenomena, and was outgassed by heating at

2500 K for four hours before admitting nitrogen. With the filament at a

temperature of approximately 2000 0 K, a constant pressure (p ) of nitrogen

was established in the experimental chamber by adjusting valves V3 and

V4 to set the leak rate of nitrogen into the chamber equal to the rate at

which nitrogen is removed by the ion pump. After steady-state conditions

were attained, the filament was cooled to room temperature (- 300 0 K), and

the change in the partial pressure of nitrogen was continuously monitored

by the omegatron.

After the filament adsorption process was essentially completed,

the pressure, instead of asymptotically rising to po, rose to a substantially

higher value, as shown in Fig. 2. This represents an additional pumping

effect at the high temperature. To investigate this anomaly, measurements

were made of the equilibrium pressures at different filament temperatures.

The data are shown in Fig. 3 as the logarithm of the ratio of the low-

temperature equilibrium pressure to the equilibrium pressure at tempera-

ture, T, as a function of reciprocal temperature. Also shown to the right

in Fig. 3 is the electronic pumping effect where the magnitude of the

A
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-6

electron ionizing current is indicated on the figure. No difference in the

equilibrium pressure was noted with the filament less than approximately

1800°K, for several equilibrium pressures between 1.7 x 10-8 Torr and

2.4 x 10-8 Torr. These data are discussed in Section 1. 3 in terms of

the equations of mass balance for the vacuum system.

1. 3 DISCUSSION

The differential equation satisfying the conditions set forth

above is, neglecting omegatron pumping, wall adsorption and desorption

effects,

dn v
Vdt - C1 - n ap - n- af a(T) (1)

where V = volume

n = molecular density

v = average velocity of molecules

ap = effective pump aperture

af = filament area

C, = molecular inflow rate

c(T) = fraction of molecules arriving at filament which
are lost due to chemical pumping

T = absolute temperature.

At equilibrium, and for a(T) = 0

C =n a (2)

Equation (1) can now be written as

4V dn
dt-- a (n - n) - a a(T) n. (3)

i



-7-

At equilibrium, and for a(T) > 0

a(TM = -f -1 (4)

Figure 4 shows (n 0 /n)-l as a function of reciprocal temperature;

the curve at the upper right is proportional to the sum of the electronic and

chemical pumping speeds. The ionizing electron current is indicated on

the curve. The curve at the lower left is proportional to the chemical

pumping speed alone. These plots were obtained from the smooth curves

drawn through the data shown in Fig. 3.

The determination of a(T) depends on the value of a , whichP

requires a measure of C , the rate of admission of nitrogen to the system.

This quantity was not measured directly owing to premature termination of

the experiments caused by valve failure. However, an indirect measure

of C 1 (and thus a p) was obtained by analyzing the transition between the

equilibrium concentrations at two temperatures. This transition region

is plotted in Fig. 5. The assumption was made that the chemical pumping

of nitrogen by the tungsten filament is a function of temperature only. This

is justified by the experimental data which indicate that the ratio of the

equilibrium pressures is a smooth function of temperature. With this

as sumption,

a(T) = a(T 2 ), for t < t < t 2 . (5)

At t = 2,

i~ •(T) = "'- 1 (6)

Substituting this value in Eq. (3), we have

4V dn n0 (7)- = a n - a - n
vdt P o p n2

I
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Integration from no to n2 gives

nn = n ex (8)

where the time constant

V V
= -- (9)

S n a

n 2 4 p

in which S is the pumping speed.

From the data for one transition between - 1800°K and 2700°K,

Po = 1.74x t0-o8Trrno, T<1800K

PZ = 4.8 x 10- 9 Torr a- n, T = 2700°K

7- = 15 seconds.

Under these conditions the total pumping speed due to the pump and

the tungsten filament is, from (9)

S =V=2.66 x 10-2 liter/sec. (10)
T

The effective pump aperture, ap, is

S _ 4 2

a = -6.2 x 10- 4cm . (21)

The function a(T) is determined from Eqs. (4) and (11), and the

experimentally determined curve of(no/n)-1 in Fig. 4, as follows:

a(T)= Ef - = 1 17. 7 x103 . (12)

a



From Eqs. (1) and (11), the chemical pumping speed of tungsten filament

for nitrogen is

3 (no liter
S = ; f a (T) =7. 35 x 10 y n sec' (13)

and for T = 2185 0 K, S = 8. 9 x 10-4 liter/sec.c

The work described here will be continued in order to establish

unambiguously the magnitude of the chemical pumping effect and to deter-

mine the effect of this pumping on the adsorption measurements.

The value of SE calculated at the same temperature of 2185°K

(10 ampere electron emission current) is

S =2.3x - 2 liter
E sec

1.4 FUTURE WORK

The measurements described above will be continued in order to

establish unambiguously the magnitude of the chemical pumping and to

determine the effect of this pumping on the adsorption measurements.

Separate experiments will be undertaken to determine whether chemical

pumping can be observed in sealed-off omegatrons.

2. ADSORPTION OF OXYGEN ON MOLYBDENUM

2. i INTRODUCTION

As is well known, the work function of a material is a sensitive

indicator of foreign matter deposited on its surface. A retarding-field

technique has been developed for the rapid and accurate determination of

the variation in work function of a surface on which electronically active

material is deposited.

T

a
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The retarding-field method is based on measuring the displace-

ment of the retarding-field characteristic of a planar diode. The anode

work function PA can be obtained from the retarding-field current-voltage

relation,

Ir = sAT 2 exp [-e (-Ua+(DA)/kT ], (14)

where I is the retarding-field current (amps), U is the anode voltager a

(volts), s is the emitter area (cm2), A is taken to be 120 (amp/cm2 per

deg 2), and e/k is 11,610 (deg/volt). The change in the applied voltage (Ua)

necessary to maintain a constant current measures the variation in anode

work function resulting from a deposit of active material onto an originally

clean anode surface. This voltage can be measured continuously during

an evaporation or adsorption process; a critical coverage of the collector

surface is indicated by a minimum or maximum in the curve of anode work

function versus time. This method used previously to measure sublima-
2

tion rates of Ba and BaO from different substrates is now being adapted

to measure the adsorption of gases on surfaces and the variation of the

work functions of surfaces due to gas adsorption.

2. 2 EXPERIMENTAL RESULTS

Preliminary results have been obtained on the effect of adsorbed

oxygen on the work function of molybdenum at room temperature (- 300 K).

The work function was measured in the planar diode structure shown in

Fig. 6 by the retarding-field method using an oxide cathode (BaO on Ta)

at 756°K as the electron source and a polycrystalline molybdenum anode

as the collector. To minimize the possibility of reactions between the

2. J. Florio, J. Appl. Phys. , 34, 200 (1963).

I
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rig. 6. Planar diode structure for measurments of effect of adsorbed
gases on the work function of molybdenum.
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the hot-filament ionization gauge and incoming oxygen, a 0.2 liter/sec

VacIon pump was appended to the diode envelope for monitoring the gas

pressure in the tube. The molybdenum anode was cleaned by electron

bombardment. Spectroscopically pure oxygen from Linde Air Products

was introduced into the system through a bakable metal valve. After

completion of the cathode processing and anode bombardment in a vacuum

system employing a 5 liter/ sec Vaclon pump, the latter was sealed off

from the system. The experimental setup is shown at the upper left in

Fig. 7.

With oxygen entering the system at a fixed leak rate, the follow-

ing parameters were measured as a function of time: (1) the pressure in

the diode assembly, using the Vaclon pump as a gauge; (2) the anode work

function from retarding-field data, Eq. (1); and (3) the effective cathode

work function from the saturation emission (Is = sAT 2 [exp (-e pc/kT)]).

Typical results obtained after flushing the system several times with

oxygen, are shown in Fig. 7.

Prior to the admission of oxygen to the system (background

pressure of 2 x 10-9 Torr), the anode and cathode work functions remained

constant at values of 4. 66 ev and 2. 05 ev, respectively. Upon opening the

leak valve, the pressure rises until a quasi-equilibrium state is reached

and the pressure holds constant at -7 x 10-8 Torr; the adsorption of

oxygen on the molybdenum anode and oxide cathode is indicated by the

changes in their work function. There are three phases in the adsorption

process.

The rate of change in work function is similar for both the

molybdenum and oxide surfaces. The results indicate three characteristic

stages: during the first two stages the pressure remains unchanged,

indicating a constant overall rate of adsorption of the incoming molecules.
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The initial rapid increase in work function tapers off at the end of the first

stage of the adsorption process, then the rate again increases rapidly in

the second stage (more clearly evident for the oxide cathode than the

molybdenum anode). In the last stage of adsorption there is a very slow

rate of rise in work function and a considerable increase in pressure,

indicating a decrease in sticking coefficient and slowing down of the adsorp-

tion process.

2. 3 DISCUSSION

The effect of oxygen on the work function of tungsten, reported
3

by Becker, using field-emission data, shows a similar time dependence

to that observed for oxygen on molybdenum using the retarding-field

technique. Owing to the unavailability of data on the sticking coefficient

of oxygen on molybdenum, it is not possible to calculate the quantity of

oxygen adsorbed during the various stages of the adsorption process.

Nevertheless, considering the similarity in the chemical and electrical

behavior of tungsten and molybdenum, an estimate of the oxygen adsorbed

can be obtained by using Eisinger's data on the sticking of oxygen on
4

tungsten (0. 1 to 0. 2). The quantity of oxygen adsorbed on the molybdenum

surface at the end of the first two stages is calculated to be 3-6 x 1014

2 14 2
molecules/cm and 9-18 x 10 molecules/cm , respectively. Assuming

negligible adsorption of oxygen during the third stage, the latter value

agrees reasonably well with the total oxygen adsorbed on tungsten, which

was found to be 1 x 1014 molecules/cm by Schlier5 and 12. 3 x 1014

molecules/cm by Eisinger. 4

3. Becker, Solid State Physics 7, 379 (1958).

4. Eisinger, J. Chem. Phys. 30, 412 (1959).

5. Schlier, J. Appl. Phys. 29, 1162 (1958).

i
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The adsorption process is believed to occur in three stages:

(1) during the first stage chemically adsorbed molecules dissociate, and

the atoms are chemically bonded to the metal with an appreciable surface

dipole moment; (2) at the end of the first stage the ability of the molecules

to dissociate is reduced owing to a lack of available adjacent sites, so that

during the second stage a layer of undissociated molecules, chemically

bonded to the metal surface with a large dipole moment, results; and (3)

during the last stage, the molecules are weakly bound with a negligible

surface dipole moment. The results of Ehrlich,6 indicating that oxygen

is chemically bonded to tungsten in two states, is consistent with this

hypothesis.

2.4 FUTURE WORK

To investigate the possibility of reactions with oxygen to form

carbon monoxide, these studies will be continued in a system containing

an omegatron for analysis of the gas ambient.

6. Ehrlich, J. Phys. Chem. Solids, 5, 47 (1958).
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